Adaptive Galerkin approximation algorithms for Kolmogorov equations in infinite dimensions

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Adaptive Galerkin approximation algorithms for Kolmogorov equations in infinite dimensions

Space-time variational formulations and adaptive Wiener–Hermite polynomial chaos Galerkin discretizations of Kolmogorov equations in infinite dimensions, such as Fokker–Planck andOrnstein–Uhlenbeck equations for functions defined on an infinite-dimensional separable Hilbert space H , are developed. The wellposedness of these equations in the Hilbert space L2(H, μ) of functions on the infinite-d...

متن کامل

Adaptive Galerkin Approximation Algorithms for Partial Differential Equations in Infinite Dimensions

Space-time variational formulations of infinite-dimensional Fokker–Planck (FP) and Ornstein–Uhlenbeck (OU) equations for functions on a separable Hilbert space H are developed. The well-posedness of these equations in the Hilbert space L2(H,μ) of functions on H, which are square-integrable with respect to a Gaussian measure μ on H, is proved. Specifically, for the infinite-dimensional FP equati...

متن کامل

OnWeak Convergence, Malliavin Calculus and Kolmogorov Equations in Infinite Dimensions

This thesis is focused around weak convergence analysis of approximations of stochastic evolution equations in Hilbert space. This is a class of problems, which is sufficiently challenging to motivate new theoretical developments in stochastic analysis. The first paper of the thesis further develops a known approach to weak convergence based on techniques from the Markov theory for the stochast...

متن کامل

Efficient Approximation Algorithms for Point-set Diameter in Higher Dimensions

We study the problem of computing the diameter of a  set of $n$ points in $d$-dimensional Euclidean space for a fixed dimension $d$, and propose a new $(1+varepsilon)$-approximation algorithm with $O(n+ 1/varepsilon^{d-1})$ time and $O(n)$ space, where $0 < varepsilonleqslant 1$. We also show that the proposed algorithm can be modified to a $(1+O(varepsilon))$-approximation algorithm with $O(n+...

متن کامل

Kolmogorov Equations in Infinite Dimensions: Well-posedness and Regularity of Solutions, with Applications to Stochastic Generalized Burgers Equations

Abstract. We develop a new method to uniquely solve a large class of heat equations, so called Kolmogorov equations in infinitely many variables. The equations are analyzed in spaces of sequentially weakly continuous functions weighted by proper (Lyapunov type) functions. This way for the first time the solutions are constructed everywhere without exceptional sets for equations with possibly no...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Stochastic Partial Differential Equations: Analysis and Computations

سال: 2013

ISSN: 2194-0401,2194-041X

DOI: 10.1007/s40072-013-0002-6